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1 Introduction

The purpose of these notes is to explore some basic properties of Möbius transforma-
tions (linear fractional transformations) which are one-to-one, onto and conformal
(angle preserving) maps of the socalled extended complex plane. We will develop
the basic properties of these maps and classify the one-to-one and onto conformal
maps of the unit disk and the upper half plane using the symmetry principle. The
one-to-one, onto and conformal maps of the extended complex plane form a group
denoted PSL2(C). We will study the conjugacy classes of this group and find an
explicit invariant that determines the conjugacy class of a given map. We finish with
a classification of the finite subgroups of PSL2(C).

The theory of Möbius Transformations is developed without any use of and only
one reference to complex analysis. This point of view certainly requires more work,
but I feel the effort is worth it, since it allows somebody with no knowledge of
complex analysis to study the subject. The prerequisite is some basic knowledge of
group theory, which is certainly met if the students have taken an undergraduate
algebra course. If not, a couple of lectures at the beginning of the course where one
introduces the basics of group theory should suffice.

I would like to thank John Harper and the students in the course Introduction
to Geometry (MTH 250, Spring 2010) for valuable comments and proofreading.

2 Affine Transformations

Let us briefly recall a few basic properties of the complex numbers. If z ∈ C, then
we can write z = r(cos(θ) + i sin(θ)), where r is the modulus, |z|, of z and θ the
argument, arg(z), of z. We will denote the real and imaginary part of z by <(z) and
=(z), respectively.

We have the following five basic maps, which we will study in the following:

1. z 7→ cz, c ∈ R, scaling

2. z 7→ z + A, A ∈ C, translation

3. z 7→ Az, A = eiθ, rotation

4. z 7→ z, complex conjugation

5. z 7→ 1
z
, inversion.

Definition 1. A direct affine transformation is a combination of (1), (2) and (3),
i.e. a map of the form T (z) = Az +B.
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Remark 1. Since we have

|T (z)− T (z′)| = |(Az +B)− (Az′ +B)| = |A||z − z′|,
we see that a direct affine transformation is an isometry if and only if |A| = 1.

Lemma 2.1. The direct affine transformation T (z) = Az+B is a translation if and

only if A = 1. If |A| = 1, A 6= 1 then T is a rotation about B
1−A

by an angle arg(A).

Proof. If A = 1, then T (z) = z + B is a translation. If |A| = 1 and A 6= 1, we let
F be a fixed point of T , i.e. a point where T (F ) = F . Then we have F = AF +B,
which implies F = B

1−A
. Now

T (z)− F =
Az −A2z +B − BA− B

1− A

=
Az −A2z − BA

1− A

=
Az(1 −A)− B

1−A
= A(z − F ).

This shows that if |A| = 1 and A 6= 1 then T is a rotation about F by an angle
arg(A).

Proposition 2.1. The set of direct affine transformations form a group under com-

position, which is denoted by Aff(C).
Proof. The identity map I(z) = z is the unit in the group Aff(C). Since composition
of functions is always associative, we only need to check that the set is closed and
that inverses exist. Let T (z) = Az +B and S(z) = A′z +B′, then we have

S ◦ T = A′(Az +B) +B′ = A′Az + A′B +B′,

which is again an affine transformation.
To find an inverse to T (z) = Az +B, we guess that T−1(z) = Cz +D. Then we

have T−1◦T (z) = z which means that C(Az+B)+D = z. So we get CAz+CB+D =
z, which means that C = A−1, and D = −AB−1.

Corollary 2.1. A direct affine transformation preserves circles and lines.

Proof. A direct affine transformation, T (z) = Az+B, where |A| = 1 is by Lemma 2.1
a rotation about B

1−A
which clearly preserves circles and lines. A direct affine trans-

formation, T (z) = Az + B, where |A| 6= 1 can be written as T (z) = r(A′z + B′),
where r is real and |A′| = 1. Again by Lemma 2.1 this map is a rotation about B′

1−A′

scaled by r, which preserves circles and lines.
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Remark 2. A map that preserves angles is called conformal. By the same argument
as above, a direct affine transformation is conformal.

3 The Stereographic Projection

b

b

b z

N

O

CP
b

Consider the unit sphere S2 in R3, that is

S2 = {(u, v, w) ∈ R3 | u2 + v2 + w2 = 1}.

We embed S2 such that the origin and the center of the sphere coincide. We identify
the complex plane with the equitorial plane. That is, for coordinates (u, v, w) of R3,C is the plane where w = 0. The North pole has coordinates N = (0, 0, 1). We will
denote a complex number z by x+ iy. Notice that the unit circle in C coincides with
the equator of S2.

For any point P ∈ S2, there is a unique line from N to P , which we denote by
NP . This line intersects the complex plane in exactly one point z ∈ C.

Definition 2. The map from SP : S2 \N → C which assigns to a point P the point
z ∈ C given by the intersection NP ∩C is called the stereographic projection.

We will now derive the coordinate expressions for both stereographic projection
and its inverse.
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Proposition 3.1. For P ∈ S2 \ N and z ∈ C, P = (u, v, w) and z = x + iy
the coordinates of the stereographic projection SP : S2 \ N → C and its inverse

SP−1 : C→ S2 \N are given by:

SP ((u, v, w)) =
u

1− w
+ i

v

1− w
(1)

and

SP−1(x+ iy) =

(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)

(2)

=

(

z + z

zz + 1
,
i(z − z)

zz + 1
,
zz − 1

zz + 1

)

. (3)

Proof.

N

L

O

P

zr

ρ

w

1− w

From the picture we see that |NO| = 1, |LO| = w, |LN | = 1 − w, |zO| = r =
√

x2 + y2. Set |PL| = ρ and note that ρ =
√
u2 + v2 + w2 − w2 =

√
u2 + v2.

Since the triangles NLP and NOZ are similar we have

ρ

r
=

1− w

1
=

u

x
=

v

y
.

from which is follows that

1− w

1
=

u

x
⇒ x =

u

1− w
1− w

1
=

v

y
⇒ y =

v

1− w
.

This proves that SP ((u, v, w)) = u
1−w

+ i v
1−w

.
For the second statement we observe that since z = x+ iy we have

z =
u

1− w
+ i

v

1− w
=

u+ iv

1− w

z =
u

1− w
− i

v

1− w
=

u− iv

1− w
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This implies that

x2 + y2 = zz =

(

u+ iv

1− w

)(

u− iv

1 − w

)

=

=
u2 + v2

(1− w)2
=

(1− w)(1 + w)

(1− w)2
=

=
1 + w

1− w
= −1 +

1

1− w
.

where we used u2 + v2 = 1− w2 in the fourth equality. This gives

1− w =
2

x2 + y2 + 1
⇒ w =

x2 + y2 − 1

x2 + y2 + 1
=

zz − 1

zz + 1
.

Since we have

x+ iy =
u+ iv

1 − w
⇒ 1− w =

u+ iv

x+ iy

and we get

u+ iv = (1− w)(x+ iy) =
2

x2 + y2 + 1
(x+ iy) =

2x+ 2iy

x2 + y2 + 1
.

Comparing real and imaginary parts gives

u =
2x

x2 + y2 + 1
=

z + z

zz + 1
v =

2y

x2 + y2 + 1
=

i(z − z)

zz + 1
,

which finishes the proof.

Definition 3. The extended complex plane is given by C∞ = C ∪ {∞}.
Remark 3. If we identify, via stereographic projection, points in the complex plane
with points in S2\N and further identify ∞ with N then we have a bijection between
the extended complex plane C∞ and S2. Under this identification S2 is known as
the Riemann sphere.

It is clear that stereographic projection is continuous as a map S2 \N → C with
a continuous inverse, since both maps are given as fractions of polynomials where
the denominator is never zero. With the above identification of N with ∞ we get
a continuous map SP : S2 → C∞ with continuous inverse, SP−1 : C∞ → S2. A
continuous map with continuous inverse is called a homeomorphism.

We note that since S2 is compact and stereographic projection is a homeomor-
phism, C∞ is compact as well. The space C∞ is a1 socalled one-point compactifica-
tion of C.

1There are other one-point compatifications of C.
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The stereographic projection gives a way of mapping a region of the sphere onto
a plane. Using2 the methods of Riemannian geometry, Gauss proved that it is
impossible to find such a map that preserves both distances and angles. We will
now see that the stereographic projection preserves angles, i.e. it is conformal.

Proposition 3.2. The map SP : S2 → C∞ given by stereographic projection and its

inverse SP−1 : C∞ → S2 are conformal maps.

Proof. Since the identity is conformal it is enough to prove that one of the maps
is conformal, since the composition of two conformal maps is again conformal. We
prove that SP−1 : C∞ → S2 preserves angles by showing that the angle between two
lines in C is the same as the angle bewteen the two tangent vector at the point of
intersection of the two curves lifted to S2.

We can assume that one of the lines in C is the x-axis and that the intersect at an
angle θ at the point p. That is consider the two lines r(t) = p+ t and s(t) = t eiθ +p.

We have SP−1(z) =
(

z+z
zz+1

, i(z−z)
zz+1

, zz−1
zz+1

)

, so we get

r(t) = SP−1(r(t)) =
(2(p+ t), 0, (p+ t)2 − 1)

1 + (p+ t)2

s(t) = SP−1(s(t)) =

=
(2(p+ t cos(θ)), 2t sin(θ), (p+ t cos(θ))2 + t2 sin2(θ)− 1)

1 + (p+ t cos(θ))2 + t2 sin2(θ)
.

These two curves intersect at t = 0, so to find the angle between r(t) and s(t) we
differentiate and evaluate at t = 0.

r′(0) =
(2(p2 − 1), 0, 4p)

(p2 + 1)2

s′(0) =
(2(p2 − 1) cos(θ), 2(p2 + 1) sin(θ), 4p cos(θ))

(p2 + 1)2
.

We let ϕ be the angle between r′(0) and s′(0) and by calculating the dot product we

2A more accurate way of saying this is that by inventing Riemannian geometry Gauss proved a
theorem usually referred to as Theorema Egregium, or, in English, totally awesome theorem, which
states that it is impossible to construct a distance and angle preserving map between two spaces if
the Gaussian curvature of the two space is not equal. In our case, C has curvature 0 and S2 has
curvature 1.
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have

cos(ϕ) =

=
4(p2 − 1)2 cos(θ) + 16p2 cos(θ)

√

(4(p2 − 1)2 + 16p2)(4(p2 − 1)2 cos2(θ) + 4(p2 + 1)2 sin2(θ) + 16p2 cos2(θ))

=
4(p2 + 1)2 cos(θ)

2(p2 + 1)2(p2 + 1)
=

= cos(θ).

So we see that θ = ϕ, which means the angle is preserved.

In the following it will be useful to have a clear definition of what is meant by
a circle on S2. A great circle on S2 is given by the intersection of 2-dimensional
subspace with S2, and in general, a circle on S2 is the intersection of a 2-dimensional
plane with S2. One extremely useful observation is the following.

Proposition 3.3. Stereographic projection takes circles to circles and lines.

Proof. Let us first consider the case where the circle goes through N . Let P be any
point on the circle, then the line NP lies in the plane. Since the intersection of the
plane with C is a line, stereographic projection takes the circle through N to a line
in C.

The other case is proved by considering the equation for the plane in R3, Au +
Bv+Cw+D = 0, and express u, v, w in terms of x, y via stereographic projection and
see that it defines a circle. From Proposition 3.1 we have w = zz−1

zz+1
, u = (1−w)x =

2
zz+1

x and v = (1 − w)y = 2
zz+1

y. Plugging this into the equation for the plane we
get

A(1− w)x+B(1− w)y + Cw +D = 0

A
2

zz + 1
x+B

2

zz + 1
y + C

zz − 1

zz + 1
+D

zz + 1

zz + 1
= 0.

This gives

2Ax+ 2By + C(zz − 1) +D(zz + 1) = 0

2Ax+ 2By + C(x2 + y2 − 1) +D(x2 + y2 + 1) = 0

(C +D)(x2 + y2) + 2Ax+ 2By +D − C = 0,

which is a circle in C
8



Remark 4. What does an open neighborhood around ∞ look like? A open neigh-
borhood around N ∈ S2 is the interior of a circle with center N in S2. The circle
is under stereographic projection mapped to a circle with the origin as its center of
some radius, say r. This means that the interior of the circle around N is mapped to
the points {z ∈ C∞ | |z| > r}. So since stereographic projection is a homeomorphism
an open neighborhood around ∞ in C∞ is the set {z ∈ C∞ | |z| > r}.

4 The Inversion Map

In this section we will study the map T , T (z) = 1
z
, called inversion. If z 6= 0 then

there is a unique w = 1
z
, so T : C\0 → C\0 is a bijection. Our goal is to extend T to

a homeomorphism, T : C∞ → C∞. Notice that 1
z
= z

|z|2 , so T is the composition of

the two maps S(z) = z and R(z) = z
|z|2 . Furthermore we see that arg(R(z)) = arg(z)

and that |R(z)| = 1
|z| , so R is inversion in the unit circle.

Proposition 4.1. Let T denote the inversion. Under the identifications that T (0) =
∞ and T (∞) = 0, T is a homeomorphism T : C∞ → C∞.

Proof. The map T is clearly a bijection T : C∞ → C∞ so since T is continuous (it is
the composition of the continuous maps R and S) as a map T : C \ {0} → C \ {0}
all we need to check is that it is continuous at 0 and ∞. We have

lim
|z|→0

T (z) = lim
|z|→∞

T (
1

z
) = lim

|z|→∞
z = ∞,

lim
|z|→∞

T (z) = lim
|z|→0

T (
1

z
) = lim

|z|→∞
z = 0.

This shows that T : C∞ → C∞ is continuous. Since the map T is its own inverse, it
is a homeomorphism.

Proposition 4.2. Let T denote the inversion. The map T takes circles and lines to

circles and lines.

Proof. We will not give all the details, since this is the same argument as in the
proof of Proposition 3.3.

Let w = 1
z

be the image of z under T . If w = a+ ib and z = x+ iy then we have
a = x

x2+y2
, b = −y

x2+y2
, x = a

a2+b2
and y = −b

a2+b2
. The equation

A(x2 + y2) +Bx+ Cy +D = 0
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is a circle or, if A = 0, a line. Using the expressions for x, y in terms of a, b and
substituting it into the equation for the circle or line, we get that a, b satisfy

D(a2 + b2) +Ba− Cb+ A = 0

which is the equation for a circle or a line.

Remark 5. Note that if the circle goes through the origin it must be mapped to a
line, since the image is unbounded, and a circle is bounded.

Example 1. Let us find the image of the vertical line x = c1 under the inversion
map. According to Equation 4, the image is the circle −c1(a

2 + b2) + a = 0 (put
A = 0, B = 1, C = 0 and D = −c1). This can be rewritten as (a− 1

2
c1)+b2 = (1

2
c1)

2,
which a circle centered at (1

2
c1, 0) of radius 1

2
c1. Note that the circle goes through

the origin, which we knew, since the image is a line.

Example 2. Let us find the image of the line x = 0 under the inversion map. Since
a = x

x2+y2
, we see that the image has x-coordinate equal to zero, hence the image lies

on the imaginary axis. Now, b = −y

x2+y2
= −y

y2
= −1

y
. So the inversion takes y 7→ −1

y

and maps 0 7→ ∞.

Next we want to show that the inversion is a conformal map C∞ → C∞. This can
be done in two different ways, we will show it geometrically by using the stereographic
projection.

Remark 6. If we take z = x + iy and z = x − iy and map them onto S2 by SP−1.
How do the the points SP−1(z) and SP−1(z) differ? We use the equation for SP−1

to get

SP−1(z) = SP−1(x+ iy) =

(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)

SP−1(z) = SP−1(x− iy) =

(

2x

x2 + y2 + 1
,

−2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)

This means that the two points SP−1(z) and SP−1(z) differ by a reflection in the
u, w-plane. If we let Φ: S2 → S2 denote the reflection in the u, w-plane, we see that
the composition SP ◦ Φ ◦ SP−1 corresponds to complex conjugation, i.e. SP ◦ Φ ◦
SP−1(z) = z.

Similarly we can take the points z and z
|z|2 (invert z in the unit circle) and map

them onto S2 by SP−1, and ask how they differ. First note that since the unit circle
is fixed under inversion in the unit circle, the corresponding map on S2 must fix the
equator. Furthermore, it must interchange the points N and S (the South pole),
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since the inversion in the unit circle maps 0 to ∞. A calculation shows that SP−1(z)
and SP−1( z

|z|2 ) differ by a reflection in the equitorial plane. If we let Θ: S2 → S2

denote the reflection in the equitorial plane, we have that SP ◦Θ◦SP−1 corresponds
to inversion in the unit circle, i.e. SP ◦Θ◦SP−1(z) = z

|z|2 . This means that as a map

of S2, the inversion map T is given by Φ ◦Θ or as a map of C∞ it can be written as

T = SP ◦ Φ ◦Θ ◦ SP−1 : C∞ → C∞.

Proposition 4.3. The inversion T : C∞ → C∞ is a conformal map.

Proof. Recall that the inversion is the composition of complex conjugation and in-
version in the unit circle. Using the notation and results from the previous remark,
the map SP ◦Φ ◦Θ ◦ SP−1 : C∞ → C∞ is equal to the inversion map, T . Since the
maps SP , Φ, Θ and SP−1 are conformal (that reflections are conformal is easy to
check), we see that T is conformal.

5 Möbius Transformations

Having shown the basic properties of affine transformations, stereographic projection
and the inversion map, we are now in a position to study Möbius transformations.

Definition 4. A Möbius transformation f : C∞ → C∞ is a map

f(z) =
az + b

cz + d
, a, b, c, d ∈ C and ad− bc 6= 0.

We have the following basic theorem about Möbius transformations.

Theorem 1. Let f be any Möbius transformations, then

1. f can be expressed as a composition of affine transformations and inversions.

2. f maps C∞ one-to-one onto itself, and is continuous.

3. f maps circles and lines to circles and lines.

4. f is conformal.

Proof. 1. We write f as

az + b

cz + d
=

a
c
(cz + d)− ad

c
+ b

cz + d
=

a

c
+

b− ad
c

cz + d
.

11



If we let w1, w2 and w3 be the maps w1 = cz + d, w2 =
1
w1

and w3 = (b− ad
c
)w2 +

a
c
,

then f = w3 ◦w2 ◦w1. Note that if c = 0, there is no inversion in the decomposition
of f .

3. Since we have shown that both affine transformations and inversions take
circles and lines to circles and lines, it follows from 1.) that f takes circles and lines
to circles and lines.

2. If z 6= −d
c

and w = az+b
cz+d

, then z = −dw+b
cw−a

. So, at every point z ∈ C, z 6= −d
c
, f is

well-defined, one-to-one, onto and continuous. We extend f to a map f : C∞ → C∞
by setting f(∞) = ∞, if c = 0. If c 6= 0, then we set f(−d

c
) = ∞. One can check

that this makes f continuous as a function f : C∞ → C∞. The inverse of f is given
by

f−1(w) =
−dw + b

cw − a
.

Again, if c = 0, we set f−1(∞) = ∞. If c 6= 0, then we set f−1(a
c
) = ∞. With

these choices, one can check that f−1 : C∞ → C∞ is continuous. In summary,
f : C∞ → C∞ is a homeomorphism.

4. This also follows from 1. since we have shown that affine transformations and
inversions are conformal, see Remark 2 and Proposition 4.3.

Remark 7. As a map f : C → C it is continuous and conformal at every point
z 6= −d

c
. As a map f : C∞ → C∞ it is continuous and conformal everywhere.

One can determine if the image of a circle is a line or a circle by using the following
argument. The map f = az+b

cz+d
is continuous as a map C→ C at every point except

z = −d
c

(this point is called a pole of f) and since a continuous function maps a
bounded set to a bounded set, we conclude the if z = −d

c
does not lie on the circle,

the image is bounded and hence a circle. If z = −d
c

lies on the circle, z = −d
c

is
mapped to ∞ and the image is a line.

Definition 5. Let M(C∞) denote the set of Möbius transformations

M(C∞) = {f : C∞ → C∞ | f(z) = az + b

cz + d
, ad− bc 6= 0}.

This set has some additional structure; it is a group under composition of func-
tions and can naturally be identified with GL2(C). We state this as a theorem.

Theorem 2. The set M(C∞) is a group under composition of functions and there

is a surjective group homomorphism Υ: GL2(C) → M(C∞) with kernel the diagonal

matrices.
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Proof. We must show that the composition of two Möbius transformations is again
a Möbius transformation. Let f1(z) =

a1z+b1
c1z+d1

and f2(z) =
a2z+b2
c2z+d2

be Möbius transfor-
mations. One easily checks that

f2 ◦ f1(z) =
(a2a1 + b2c1)z + a2b1 + b2d1
(c2a1 + d2c1)z + c2b1 + d2d1

,

which again a Möbius transformation.3

The identity f(z) = z is a Möbius transformation. In the proof of Theorem 1 we
saw that for a Möbius transformation f(z) = az+b

cz+d
the inverse is given by

f−1(w) =
−dw + b

cw − a
.

Furthermore, the composition of functions is associative, so we have shown that the
set M(C∞) is a group under composition of functions.

We have a map Υ: GL2(C) → M(C∞) given by

[

a b
c d

]

7→ az + b

cz + d
.

The map Υ sends the identity matrix to the map f(z) = z, which is the identity in
the group M(C∞). We must show that the product of two matrices is mapped to
the product of two Möbius transformations. Let f1(z) =

a1z+b1
c1z+d1

and f2(z) =
a2z+b2
c2z+d2

be Möbius transformations.
[

a1 b1
c1 d1

] [

a2 b2
c2 d2

]

=

[

a2a1 + b2c1 a2b1 + b2d1
c2a1 + d2c1 c2b1 + d2d1

]

7→

(a2a1 + b2c1)z + a2b1 + b2d1
(c2a1 + d2c1)z + c2b1 + d2d1

= f2 ◦ f1(z).

This means that under the map Υ: GL2(C) → M(C∞) matrix multiplication corre-
sponds to composition of functions, which means that it is a homomorphism. It is
onto since the Möbius transformation f(z) = az+b

cz+d
is hit by the matrix with the same

entries. The kernel, Ker(Υ), is the subgroup of matrices that are mapped to the
identity map. The Möbius transformation f(z) = z can be written as f(z) = az+0

0z+a
,

which is exactly the image of the diagonal matrices.

3One should add that f2 ◦ f1 cannot reduce to a constant. This is clear since the composition
of two functions both of which are one-to-one and onto is again one-to-one and onto.
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Remark 8. The kernel of Υ is Ker(Υ) = kI, k ∈ C and I the identity matrix. Hence
Υ induces a group isomorphism Υ: GL2(C)/kI → M(C∞). The group GL2(C)/kI
is denoted PGL2(C).

If we let SL2(C) denote the complex matrices with determinant one, one can
show that the map Υ: SL2(C) → M(C∞) is onto, and has kernel ±I, so one gets
an isomorphism Υ: SL2(C)/ ± I → M(C∞). This just says that, instead of the
condition ad− bc 6= 0, we could just as well have used ad− bc = 1.

We end this section with a few examples.

Example 3. Find the image of interior of the circle |z − 2| = 2 under the map
f(z) = z

2z−8
. Note first that z = 4 is on the circle, so the image must be a line. We

see that f(0) = 0 and f(2 + 2i) = − i
2
, so the image is the imaginary axis. Since a

continuous map preserves connectedness, the interior of the circle is either mapped
to the right or left half plane. Since f(2) = −1

2
, the set {z ∈ C | |z − 2| < 2} is

mapped to the set {z ∈ C | <(z) < 0}.
Example 4. Construct a conformal map {z ∈ C | |z| < 1} → {z ∈ C | <(z) > 0}.
Since Möbius transformations are conformal, we construct a Möbius transformation
that takes one set to the other. First we look for a map that takes the unit circle
to the imaginary axis. The map must have a pole on the unit circle, since the
imaginary axis is unbounded. Look at f1(z) =

z+1
z−1

, which satisfies f1(1) = ∞ and
f1(−1) = 0, so it maps the unit circle onto some straight line through the origin.
Since f1(i) = −i it maps {z ∈ C | |z| = 1} to {z ∈ C | <(z) = 0}. We see that the
interior {z ∈ C | |z| < 1} is mapped to {z ∈ C | <(z) < 0}, since f1(0) = −1 and
since f maps connected sets to connected sets. Hence the map f(z) = −z+1

z−1
maps

{z ∈ C | |z| < 1} → {z ∈ C | <(z) > 0}.
Example 5. Determine the image of the second quadrant {z ∈ C | <(z) <
0 and =(z) > 0} under the mapping f(z) = z+i

z−i
. Let us first see where the two axis

are mapped. Since f(2i) = 3 and f(3i) = 2 the imaginary axis is mapped to the real
axis. We have f(0) = −1 and f(−1) = −i, so the imaginary axis is mapped to the line
{z = x+iy | y = −x−1}. We also have f(−1+3i) = 9−2i

5
, so we see that f maps the

set {z ∈ C | <(z) < 0 and =(z) > 0} to the set {z = x+ iy | y > −x−1 and y < 0}.

6 The Cross Ratio

We have already seen that Möbius transformations map circles to circles4. In this
section we want to find a specific Möbius transformation that takes a specific circle

4In this section we will not destinguish between circles and lines, since a line in C is a circle inC∞ closed at ∞.
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to another specific circle. Recall from Euclidean geometry that three points uniquely
determine a circle. Let us denote one circle by C1 and one by C2. We choose points
z1, z2 and z3 on C1 and w1, w2 and w3 on C2. Then if we find a Möbius transformation
h that takes

h(z1) = w1, h(z2) = w2, h(z3) = w3 (4)

then h must map C1 to C2. The trick is first to map C1 onto the real axis, then map
the real axis onto C2. To map C1 onto the real axis is the same as solving Equation 4
for w1 = 0, w2 = 1 and w3 = ∞.

If the points zi 6= ∞, we define a Möbius transformation f by

f(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
(5)

which clearly takes f(z1) = 0, f(z2) = 1, f(z3) = ∞. If one of the three points
zi = ∞ (which means that C1 is a line) we have

f(z) =
z2 − z3
z − z3

(z1 = ∞), f(z) =
z − z1
z − z3

(z2 = ∞), f(z) =
z − z1
z2 − z1

(z1 = ∞) (6)

which satisfy f(z1) = 0, f(z2) = 1, f(z3) = ∞. Now let g be another Möbius
transformation which takes g(w1) = 0, g(w2) = 1, g(w3) = ∞. Then we see that the
map h = g−1 ◦ f satisfies

h(z1) = g−1 ◦ f(z1) = g−1(0) = w1

h(z2) = g−1 ◦ f(z2) = g−1(1) = w2

h(z3) = g−1 ◦ f(z3) = g−1(∞) = w3.

Notice that the equation h(z) = w can be written as

g−1(f(z)) = w ⇐⇒ g(w) = f(z) (7)

which means that

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
=

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
. (8)

These fractions are called cross ratios.

Definition 6. Let z, z1, z2, and z3 be four points in C∞. Then the expression

(z, z1, z2, z3) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

is called the cross ratio of the four points z, z1, z2, and z3.
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To map z1, z2, and z3 onto w1, w2, and w3 we have to solve Equation 7 for w
in terms of z, which by Equation 8 is the same as equating the two cross ratios and
solving for w in terms of z. Note that the order of the terms in the cross ratio is
essential.

We now give some examples.

Example 6. Find a Möbius transformation that takes 0 to i, 1 to 2 and −1 to 4.
We calculate the approprate cross ratios

(z, 0, 1,−1) =
(z − 0)(−1− (−1)

(z − (−1))(1− 0)
=

2z

z + 1

(w, i, 2, 4) =
w − i(2− 4)

(w − 4)(2− i)
=

−2(w − i)

(w − 4)(2− i)
.

So to find the Möbius transformation we must equate the two expressions and solve
for w.

−2(w − i)

(w − 4)(2− i)
=

2z

z + 1

which gives

w = h(z) =
(16− 6i)z + 2i

(6− 2i)z + 2

which is the desired Möbius transformation.

The next example is analogous to an earlier example which we treated by an ad
hoc method. The concept of an orientation gives us an algorithm to solve similar
problems.

Remark 9. A circle is not only determined by the three points z1, z2 and z3 but
also oriented by the three points. A line also needs three points to orient it, since
it closes up at ∞. The orientation is given by proceeding through the three points
in succession. This orientation determines a left region, namely the region that is to
the left of an observer traversing the circle in the direction of the orientation. Using
conformality of the Möbius transformation it can be shown that given two circles C1

and C2 with orientations determined by the points z1, z2 and z3 and w1, w2 and w3,
the Möbius transformation maps the left region of C1 to the left region of C2.

Example 7. Find a Möbius transformation that takes the region D1 = {z ∈ C |
|z| > 1} to the region D2 = {z ∈ C | <(z) < 0}.
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We choose both D1 and D2 to be left regions. That is accomplished by choosing
z1 = 1, z2 = −i, z3 = −1 and w1 = 0, w2 = i, w3 = ∞. Since Möbius transformations
take left regions to left regions, a solution to the problems is a Möbius transformation
that takes 1 to 0, −i to i and −1 to ∞. As in the previous example we find such a
Möbius transformation by equating the two cross ratios, i.e.

(w, 0, i,∞) = (z, 1,−i,−1)

which is the same as

w − 0

i− 0
=

(z − 1)(−i+ 1)

(z + 1)(−i− 1)
,

where we have used the first formula in Equation 6 to calculate the cross ratio for
w. This gives the desired Möbius transformation

w = h(z) =
1− z

1 + z
.

7 The Symmetry Principle and Maps of the Unit

Disk and the Upper Halfplane

We wish to determine all possible Möbius transformations from the unit disk to itself,
and from the upper halfplane to itself. For this, we need the symmetry principle.
First we need a few definitions.

Definition 7. Two points z1 and z2 are symmetric with respect to a straight line L
if L is the perpendicular bisector of the line joining z1 and z2.

A circle is orthogonal to a line L if the tangent of the circle is orthogonal to the
line at the point of intersection. This is equivalent to the center of the circle lying
on L.

Definition 8. Two points z1 and z2 are symmetric with respect to a circle C if every
straight line or circle passing through z1 and z2 intersects C orthogonally.

Note that this in particular means that the center a of C and ∞ are symmetric
with respect to C. Since a circle is bounded there is no circle through both a and
∞ and any line through a (and ∞) is orthogonal to C. We can now state the
symmetry-preserving properties of Möbius transformations.
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Theorem 3 (The Symmetry Principle). Let C be a line or circle in C and let f be

a Möbius transformation. Two points z1 and z2 are symmetric with respect to C if

and only if their images under f , f(z1) and f(z2) are symmetric with respect to the

image of C under f , f(C).

Proof. Since Möbius transformations are conformal they preserve orthogonality. Two
points are symmetric with respect to a circle or line if every circle or line containing
the points intersects the given circle or line orthogonally. Since they preserve the
class of circles and lines and preserve orthogonality, they preserve the symmetry
condition.

Given a circle C and a point α we would like a formula for the point α∗, the point
symmetric to α with respect to C.

Proposition 7.1. Given a point α and a circle C with center a and radius R. Then

α∗ =
R2

α− a
+ a, (9)

is the point symmetric to α with respect to C.

Proof. By equating the cross ratios (w, 0, 1,∞) and (z, a − R, a + Ri, a + R) we
observe that points a− R, a+Ri and a+ R (and hence all of C) is mapped to the
real axis by

f(z) = i
z − (a− R)

z − (a+R)
. (10)

By the symmetry principle α is symmetric to α∗ with respect to C if and only if
f(α) is symmetric to f(α∗) with respect to the real axis. That f(α) is symmetric
to f(α∗) with respect to the real axis is clearly equivalent to f(α) and f(α∗) are
complex conjugate points in C, f(α) = f(α∗). Using Equation 10 this is equivalent
to

i
α∗ − (a−R)

α∗ − (a +R)
= i

z − (a−R)

z − (a +R)
= −i

α− (a− R)

α− (a+R)

which when solving for α∗ yields

α∗ =
R2

α− a
+ a.

This also shows that the point α∗ is unique.
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Remark 10. From Equation 9 we see that

arg(α∗ − a) = arg

(

R2

α− a

)

= arg

(

R2(α− a)

|α− a|2
)

= arg(α− a).

This means that the symmetric points lie on the same line from the center a. Fur-
thermore we have

|α∗ − a| = R2

|α− a| ⇒ R2 = |α∗ − a||α− a|.

Next we classify the Möbius transformations that take the unit disk to itself5.
We denote the open unit disk by D2.

Theorem 4. Let f be a Möbius transformation that takes D2 to itself, then

f(z) = eiθ
z − α

αz − 1
, where α ∈ C and |α| < 1.

Proof. Let f be such a Möbius transformation. Then f maps the unit circle Cz to
the unit circle Cw. Furthermore, since the interior is mapped to the interior there
must be a point α, |α| < 1 which is mapped to the origin, i.e. f(α) = 0. According
to Equation 9 with a = 0 the point

α∗ =
12

α− 0
=

1

α

is symmetric to α with respect to Cz. By the symmetry principle this implies that
f( 1

α
) is symmetric to f(α) = 0 with respect to Cw. Since the origin is the center of

Cw its symmetric point is ∞. This implies

f

(

1

α

)

= ∞.

This means that f has a zero at α and a pole at 1
α
. This implies that f is of the

form

f(z) = k
z − α

z − 1
α

= kα
z − α

αz − 1

for some constant k.

5More generally it can be shown that the Möbius transformations are the one-to-one analytic
(complex differentiable) maps of the unit disk to itself.
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We also know that f(1) must be mapped to some point on Cw, so we have

1 = |f(1)| = |kα|| |1− α|
|α− 1| = |kα|.

This implies that kα = eiθ for some θ ∈ [0, 2π]. We see that f must look like

f(z) = eiθ
z − α

αz − 1
, where |α| < 1.

Now we just need to check that all such maps takes the disk to itself. Let
α = a+ ib, then we have

|f(i)| =
∣

∣

∣

∣

eiθ
i− α

αi− 1

∣

∣

∣

∣

=
|i− α|
|αi− 1| =

| − a+ (1− b)i|
|b− 1 + ai| =

√

(−a)2 + (1− b)2
√

(b− 1)2 + a2
= 1,

|f(1)| =
∣

∣

∣

∣

eiθ
1− α

α− 1

∣

∣

∣

∣

= 1,

|f(−1)| =
∣

∣

∣

∣

eiθ
−1− α

−α− 1

∣

∣

∣

∣

= 1.

Since f(α) = 0 and |α| < 1 the interior goes to the interior, which proves that f
maps the disk to itself.

We finish this section with a classification of the Möbius transformations that
takes H2, H2 = {z ∈ C | =(z) > 0}, to H2. We formulate this in the following
theorem.

Theorem 5. The Möbius transformations H2 → H2 are the maps

f(z) =
az + b

cz + d
, a, b, c, d ∈ R and ad− bc > 0.

For the proof we need the following proposition.

Proposition 7.2. A Möbius transformation f maps the real line to the real line if

and only if the coefficients a, b, c and d are real.

Proof. We first assume that the coefficients a, b, c and d of f are real. Then the
image of the three points 0, 1 and 2 is clearly three points on the real axis. Since the
image of a line is determined by the image of three points on that line, this proves
that the real axis is mapped to the real axis.
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Denote the real axis by R∞
6. Assume now that f(R∞) = R∞. This implies that

f maps three points on the real axis q1, q2 and q3 to three points on the real axis
r1, r2 and r3 (we assume that all points are finite, if this is not the case, modify the
following cross ratios acordingly, see Equation 6). This means that f is determined
by equating the two cross ratios

(w, r1, r2, r3) = (z, q1, q2, q3)

which is the same as

(z − q1)(q2 − q3)

(z − q3)(q2 − q1)
=

(w − r1)(r2 − r3)

(w − r3)(r2 − r1)
.

When we solve for w we get a Möbius transformation w = f(z) with real coefficients,
since q1, q2, q3, r1, r2 and r3 are real. Since the points q1, q2, q3, r1, r2 and r3 were
arbitrary, this finishes the proof.

This proposition allows us to give a quick proof of the theorem.

Proof. Let f be a Möbius transformation that maps H2 to H2. Since the real axis
partitions C∞ into two connected components, and a Möbius transformation maps
a connected component to a connected component, f must map the real axis to the
real axis. By Proposition 7.2 we can choose f as

f(z) =
az + b

cz + d
, a, b, c, d ∈ R

We have

f(z) =
az + b

cz + d

=
az + b

|cz + d|2 (cz + d)

=
1

|cz + d|2 (ac|z|
2 + bd+ bcz + adz).

Hence we have

=(f(z)) = =
(

az + b

cz + d

)

= =
(

1

|cz + d|2 (ac|z|
2 + bd+ bcz + adz)

)

=
ad− bc

|cz + d|2=(z).

This means that f maps H2 to itself if and only if ad− bc > 0.

6The subscript is a reminder that this is a circle in C∞ which is closed up at ∞
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Remark 11. The set of maps

MR(C∞) =

{

f(z) =
az + b

cz + d
| a, b, c, d ∈ R}

is a subgroup of the the group of Möbius transformations which analogously to the
case where the coefficients are complex can be identified with the set of matrices
GL2(R)/kI = PGL2(R). The subgroup of matrices in GL2(R) with positive deter-
minant is denoted by GL+

2 (R). We have a surjective map

Υ: GL+
2 (R) → {

az + b

cz + d
| a, b, c, d ∈ R and ad− bc > 0

}

= M
+R(C∞)

with Ker(Υ) = kI, where k ∈ R, k > 0, and I is the identity matrix. Hence we get
an isomorphism

Υ: GL+
2 (R)/kI → M

+R(C∞)

The group GL+
2 (R)/kI is denoted PGL+

2 (R).
One can ask, if there are more conformal bijections of D2 and H2 than the ones

we have determined in the preceeding theorems. The answer relies on some difficult
results in complex analysis, so we state the theorem without a proof.

Theorem 6. The conformal maps of C∞ are precisely the Möbius transformations.

In particular, the maps D2 → D2 and H2 → H2 determined in Theorem 4 and

Theorem 5 are the only conformal bijections of D2 and H2.

Since H2 and D2 both serve as models of hyperbolic geometry, it is important to
find all conformal maps from H2 → D2. The map 7

ϕ(z) =
z − i

z + i
(11)

is a conformal bijection H2 → D2 and we use this map and the calculation we have
done for H2 to determine all conformal bijections H2 → D2. We state the result as
a theorem.

Theorem 7. The set of conformal bijections g : H2 → D2 is the set of maps

{g = ϕ ◦ h | h(z) = az + b

cz + d
, a, b, c, d ∈ R and ad− bc > 0} (12)

where ϕ is given by Equation 11. This set is in one-to-one correspondence with the

group PGL+
2 (R)

7The are of course many other conformal bijections H2 → D2.
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Proof. Since ϕ is a conformal bijection H2 → D2 it is in view of Theorem 6 clear that
all possible conformal bijections H2 → D2 are given by Equation 12. A bijection

{g = ϕ ◦ h | h(z) = az + b

cz + d
, a, b, c, d ∈ R and ad− bc > 0} →

{h | h(z) = az + b

cz + d
, a, b, c, d ∈ R and ad− bc > 0}

is given by ϕ ◦ h 7→ h, with inverse h 7→ ϕ ◦ h. We have previously noted that the
set of conformal bijections H2 → H2 is PGL+

2 (R).
Remark 12. Since ϕ : H2 → D2 is a conformal bijection, the set of conformal bijec-
tions of D2 is in bijective correspondence with the set of conformal bijections of H2.
If we let f be any conformal bijection of H2 and g be any conformal bijection of D2,
then the bijection is given by conjugating with ϕ and ϕ−1, that is, f 7→ ϕ ◦ f ◦ ϕ−1

and g 7→ ϕ−1 ◦ g ◦ ϕ. For this reason the set of conformal bijections of D2 must be
in one-to-one correspondence with PGL+

2 (R), which is not obvious at all from the
description in Theorem 4.

8 Conjugacy Classes in M(C∞)

In this section we will work in the group PSL2(C), which is isomorphic to M(C∞).
The assumption “Let f ∈ PSL2(C)” means that f is a Möbius transformation which
corresponds to an equivalence class in PSL2(C) given by ±A, A ∈ SL2(C).
Definition 9. Two elements f, g ∈ PSL2(C) are conjugate if there exists h ∈
PSL2(C) such that f = h ◦ g ◦ h−1.

Remark 13. Note that conjugacy is an equivalence relation, which partitions PSL2(C)
into disjoint equivalence classes. The equivalence class containing the identity map,
id, contains no other elements, since for all g ∈ PSL2(C) we have g ◦ id ◦ g−1 =
g ◦ g−1 = id.

The following easy fact will be used again and again in the sequel: If z0 is a fixed
point of f then h(z0) is a fixed point of h ◦ f ◦ h−1, and the maps f and h ◦ f ◦ h−1

have the same number of fixed points.

We start with the following theorem.

Theorem 8. Let f ∈ PSL2(C), f(z) = az+b
cz+d

. If (a + d)2 6= 4, then f has two fixed

points in C∞. If (a+ d)2 = 4, f not equal to the identity, then f has one fixed point

in C∞.
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Proof. The map f fixes ∞ if and only if c = 0. If c 6= 0, z is a fixed point if and only
if it is a root in cz2 + (d − a)z − b = 0. This has two roots unless the discriminant
(d− a)2 + 4bc = 0. Now we have

(d− a)2 + 4bc = 0 ⇐⇒ a2 + d2 − 2ad+ 4bc = 0

⇐⇒ a2 + d2 − 2ad+ 4bc + 4 = 4

⇐⇒ a2 + d2 − 2ad+ 4bc + 4(ad− bc) = 4

⇐⇒ a2 + d2 + 2ad = 4.

This implies that if c 6= 0, then f has a single fixed point if and only if (a+ d)2 = 4.
If c = 0, then ad = 1 and we know that f(z) = az+b

d
= a2z + ba, since ad = 1.

This map has ∞ as a fixed point and the second fixed point is ab
1−a2

. The point
ab

1−a2
6= ∞ if and only if and only if a2 6= 1 or equivalently (a+ d)2 6= 4, since ad = 1.

If a2 = 1 then f(z) = z± b, so either f(z) = z or f has ∞ as its only fixed point.

For a matrix A ∈ M2×2(C) we have the trace

tr : M2×2(C) → C given by tr

([

a b
c d

])

= a + d.

For two matrices A and B we have

tr(AB) = tr(BA)

tr(ABA−1) = tr(B)

tr(−A) = −tr(A).

In particular we see that the trace only depends on the conjugacy class of a matrix.
Since an equivalence class in PSL2(C) is represented by the matrices ±A, A ∈
SL2(C), we see that the trace is not well-defined as a function tr : PSL2(C) → C.
However, when we square the trace we get a well-defined function

tr2 : PSL2(C) → C.
We state this as a propositon.

Proposition 8.1. Let f ∈ PSL2(C), f = ±
[

a b
c d

]

. The function tr2 : PSL2(C) →C, given by

tr2
(

±
[

a b
c d

])

= (a + d)2.

is well-defined and depends only on the conjugacy class of f .
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Example 8. Let fλ(z) = λz, λ ∈ C \ {0, 1}. Then fλ is represented in SL2(C) by
the matrices

fλ = ±
[
√
λ 0
0 1√

λ

]

and so we have tr2(fλ) = (
√
λ+ 1√

λ
)2 = λ+ 1

λ
+ 2.

Definition 10. Define the functions fλ ∈ PSL2(C) by

fλ(z) =

{

λz λ 6= 0, 1,

z + 1 λ = 1.

These simple maps turn out to represent all the conjugacy classes in PSL2(C).
We state this as a theorem.

Theorem 9. If f is a non-identity element in PSL2(C), then there exists some

λ ∈ C \ {0} such that f is conjugate to fλ.

Proof. Suppose first that f has only one fixed point, z0. Using cross ratios we find
a g such that g(z0) = ∞. The map g ◦ f ◦ g−1 fixes only g(z0) = ∞, since f only has
one fixed point. Since ∞ is the only fixed point we must have g ◦ f ◦ g−1(z) = z + t
for some t. If we let h(z) = z

t
we see that

h ◦ g ◦ f ◦ g−1 ◦ h−1(z) = z + 1

which means that (h ◦ g) ◦ f ◦ (h ◦ g)−1(z) = z + 1, and so f is conjugate to f1.
If f has two fixed points z1 and z2, we use cross ratios to find a map g such that

g(z1) = 0 and g(z2) = ∞. This implies that g ◦ f ◦ g−1 fixes 0 and ∞ and hence is a
dilation, that is, g ◦ f ◦ g−1(z) = λz, λ ∈ C \ {0, 1}. This means that f is conjugate
to fλ, λ ∈ C \ {0, 1}.

To determine the conjugacy classes completely we must see when two maps fλ
and fκ are conjugate.

Theorem 10. The maps fλ and fκ are conjugate if and only if λ = κ or λ = 1
κ
, i.e.

tr2(fλ) = tr2(fκ).

Proof. First we consider the case λ = 1. Since f1 fixes only ∞, the map g ◦ f1 ◦ g−1

fixes only g(∞). This implies that f1 is not conjugate to fκ, κ 6= 1, since fκ, κ 6= 1
fixes both 0 and ∞.
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Now we let λ 6= 1 and κ 6= 1. Suppose that fλ and fκ are conjugate, then
tr2(fλ) = tr2(fκ). This implies λ + 1

λ
+ 2 = κ + 1

κ
+ 2, which implies that λ = κ or

λ = 1
κ
.

On the other hand, if T (z) = 1
z

we have

T ◦ fλ ◦ T−1(z) =
1

λ1
z

=
1

λ
z = f 1

λ

(z)

which means that fλ is conjugate to f 1

λ

.

Corollary 8.1. Two non-identity elements f, g ∈ PSL2(C) are conjugate if and

only if tr2(f) = tr2(g).

Proof. We already know that if f and g are conjugate, then tr2(f) = tr2(g).
Now assume tr2(f) = tr2(g) and pick representatives fλ and fκ in the conjugacy

classes of f and g. This means that there exists h1, h2 ∈ PSL2(C) such that fλ =
h1 ◦ f ◦ h−1

1 and fκ = h2 ◦ g ◦ h−1
2 . Since tr2(f) = tr2(g) we have tr2(fλ) = tr2(fκ),

and so by the previous theorem fλ and fκ are conjugate. Now f is conjugate to fλ,
fλ is conjugate to fκ and fκ is conjugate to g, which by transitivity of the relation
implies that f is conjugate to g.

Definition 11. Let f ∈ PSL2(C). Then f is conjugate to fλ and f 1

λ

for some

λ ∈ C \ {0}. The pair (λ, 1
λ
) is called the multiplier of f .

Remark 14. It follows from the theorem that two maps are conjugate if and only if
they have the same multiplier. The multiplier and the tr2 are related by the fact
that (λ, 1

λ
) are roots in the equation z2 + (2− tr2(f))z + 1 = 0.

9 Geometric Classification of Conjugacy Classes

In this section we will study the limiting behaviour of representatives in the dif-
ferent conjugacy classes. The behaviour is determined by the multiplier, (λ, 1

λ
)

or equivalently by tr2(f) = λ + 1
λ
+ 2, since f is conjugate to fλ if and only if

tr2(f) = tr2(fλ) = λ+ 1
λ
+ 2.

Let f ∈ PSL2(C) and assume first that tr2(f) = 4. This is equivalent to the
multiplier of f being (1, 1) or λ = 1 and hence f is conjugate to f1. Such an f
has only one fixed point, z0. We let g ∈ PSL2(C) be a map such that g(z0) = ∞.
Then the conjugate h = g ◦ f ◦ g−1 fixes only ∞. That means h is a translation
and since there is only one fixed point, we have h(z) = z + k, k 6= 0. It follows that
hn(z) = z + nk. We have

lim
n→∞

hn(z) = lim
n→∞

z + nk = ∞
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for all z ∈ C. This implies

lim
n→∞

hn(z) = lim
n→∞

g ◦ fn ◦ g−1(z)

which implies

lim
n→∞

g−1 ◦ hn(z) = lim
n→∞

g−1 ◦ g ◦ fn ◦ g−1(z).

By composing with g we get

lim
n→∞

g−1 ◦ hn ◦ g(z) = lim
n→∞

fn ◦ g−1 ◦ g(z) = lim
n→∞

fn(z).

Since limn→∞ hn(z) = limn→∞ z + nk = ∞ for all z ∈ C we have limn→∞ hn ◦ g(z) =
∞. This implies

lim
n→∞

fn(z) = g−1(∞) = z0

for all z ∈ C. Hence we see that by applying f repeatedly, all points in C are moved
towards the fixed point, z0. A map with λ = 1 is called parabolic.

Next we consider the case where tr2(f) 6= 4. In this case f is conjugate to fλ,
λ 6= 0, 1, and f has two fixed points, z1 and z2.

If |λ| = 1 then λ = eiθ. This means that the limit of fn
λ does not exist and hence

neither does the limit of fn. Such a map is called elliptic.
There are two case remaining: |λ| < 1 and |λ| > 1.
Using cross ratios we find a map g that takes z1 to 0 and z2 to ∞. Then g◦f ◦g−1

fixes 0 and ∞ and hence g ◦ f ◦ g−1 = fλ for λ ∈ C \ {0, 1}. We clearly have
fn
λ (z) = λnz.

If |λ| < 1 we see that limn→∞ fn
λ (z) = 0 for all z 6= ∞ ∈ C∞. Similarly to above

this implies that

lim
n→∞

fn(z) = g−1(0) = z1 for all z 6= z2 ∈ C.
If |λ| > 1 we have limn→∞ fn

λ (z) = ∞ for all z 6= 0 ∈ C∞ so we see that

lim
n→∞

fn(z) = g−1(∞) = z2 for all z 6= z1 ∈ C∞.

So this means that f progessively moves a point z 6= z1, z2 away from one of
these fixed points and towards the other one. A map with |λ| 6= 1 and λ is real and
positive is called hyperbolic. Otherwise it is called loxodromic.
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Since tr2(f) = λ + 1
λ
+ 2, we have the following classification of the limiting

behaviour of a Möbius transformation, f in terms of the tr2(f). We formulate this
in the following table:

f is parabolic if and only if tr2(f) = 4

f is hyperbolic if and only if tr2(f) > 4

f is loxodromic if and only if tr2(f) < 0 or tr2(f) /∈ R
f is elliptic if and only if 0 ≤ tr2(f) < 4.

If f is elliptic f is conjugate to fλ, |λ| = 1. For a unit complex number λ 6= 1 we
have λ+ 1

λ
∈ R and satisfies −2 ≤ λ+ 1

λ
< 2, which implies that f is elliptic if and

only if 0 ≤ tr2(f) < 4.

10 Möbius Transformations of Finite Period

Certain maps f ∈ M(C∞) satisfy fm(z) = z. These maps generate finite subgroups
of M(C∞) and we wish to classify which maps have this property. We begin with a
definition.

Definition 12. An element f ∈ PSL2(C) has period m if m is the smallest integer
such that fm(z) = z. If no such integer m exists, f has infinite period.

Theorem 11. If f ∈ PSL2(C) is a non-identity element with finite period, then f
is elliptic.

Proof. First note that f is conjugate to fλ for some λ, so fn is conjugate to fn
λ . Since

we assume that f has finite period, say m, we see that fλ also has finite period, m.
We know that fn

1 (z) = z+n, so fn
1 has infinite period and we conclude that f is not

conjugate to f1. This implies that λ 6= 1 and hence fn
λ (z) = λnz. Since fλ also has

period m we see that λmz = z and hence λm = 1. Hence we see that f is elliptic.

Remark 15. It is not true that all elliptic maps have finite period. If we put λ = eiθ

we see that f is elliptic if and only if θ is not an integer multiple of 2π and that it
has finite period if and only if θ is a rational (but not integer) multiple of 2π. If θ is
irrational, f is an elliptic map which does not have finite period.

11 Rotations of C∞

In this section we will study certain Möbius transformations which are rotations.
We start by defining rotation in R3 and then explain what we mean by a rotation
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of C∞. We will show that rotations of C∞ are Möbius transformations, and will
classify which Möbius transformations are rotations.

Definition 13. A rotation of S2 is a linear mapwith positive determinant that maps
S2 to itself.

Remark 16. By a theorem of Euler, such a rotation always has an axis that is fixed.
By choosing a suitable orthonormal basis, with the vector that is fixed as a basis
vector, of R3, such a map is given by the matrix





cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1





This means that in the orthogonal complement to the vector that is fixed, the map
is given by an element of SO(2). A rotation of S2 extends to a rotation of R3 by
linearity. The set of rotations of R3 is denoted by SO(3) and forms a group under
matrix multiplication. One can show that rotations are conformal (angle preserving)
maps of R3.

We start with the following basic definition.

Definition 14. A map f : C∞ → C∞ is called a rotation of C∞ if the map SP−1 ◦
f ◦ SP : S2 → S2 is a rotation, i.e. an element of SO(3).

Remark 17. The set of rotations ofC∞ is denoted Rot(C∞) and is a group under com-
position. Since both stereographic projection and the rotation SP−1 ◦ f ◦SP : S2 →
S2 are conformal, we see that f has to be conformal as well, i.e. f is an element
of M(C∞) or PSL2(C), since the Möbius transformations are exactly the conformal
maps of C∞. In particular, Rot(C∞) ⊆ M(C∞) is a subgroup, which can be identi-
fied with a subgroup of PSL2(C) in the usual way. In the following we will describe
this subgroup concretely.

If P = (u, v, w) ∈ S2 then we call P̃ = (−u,−v,−w) ∈ S2 the antipodal point
of P . If z = SP ((u, v, w)) ∈ C∞ the antipodal point of z, z̃ ∈ C∞ is given by
z̃ = SP ((−u,−v,−w)). It follows from the formulas for SP that the antipodal
point of z is given by −1

z
. Note that if f ∈ Rot(C∞) then an antipodal pair (z, z̃)

is mapped to an antipodal pair (f(z), ˜f(z)) Since rotating S2 and then apply the
antipodal map is the same as applying the antipodal map and then rotating, we have
f(z̃) = ˜f(z), which means for a rotation f we have

f

(−1

z

)

=
−1

f(z)
.

This formula is important for the proof of the next theorem.
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Theorem 12. The group of rotations of C∞ is given by

Rot(C∞) =

{

az + b

−bz + a
| aa + bb = 1

}

= PSU2(C).
Proof. Let f ∈ Rot(C∞), f(z) = az+b

cz+d
and ad − bc = 1. By the above formula we

have

−1
z
+ b

c−1
z
+ d

=
−1
az+b

cz+d

.

which implies

bz − a

dz − c
=

−cz − d

az + b
.

Comparing these two matrices in PSL2(C) we get
[

b −a
d −c

]

= ±
[

−c −d

a b

]

If the factor is −1 we get b = c and a = −d, which means that 1 = ad − bc =
−aa − bb = −(|a|2 + |b|2) < 0, which is clearly impossible. If the factor is +1 we
have b = −c and a = d and we get f(z) = az+b

−b+a
, aa + bb = 1. These maps form a

subgroup of PSL2(C), which we denote by PSU2(C). Hence we have shown that
Rot(C∞) ⊆ PSU2(C).

For the other inclusion, we first noice that if f(z) = az+b

−b+a
, aa + bb = 1 fixes 0,

then b = 0. This implies that aa = 1 and hence f(z) = az
a

= a2z, |a2| = 1. So f

is a rotation by an angle θ, where a2 = eiθ. Now let f(z) = az+b

−b+a
, aa + bb = 1 be

any transformation and let f(z0) = 0. We let z0 correspond to P ∈ S2 and as usual
0 corresponds to S. Then there exists a rotation of S2, R, with R(P ) = S. The
composit SP ◦ R ◦ SP−1 = R1 takes z0 to 0, and is by definition a rotation of C∞.
The map f ◦R−1

1 fixes 0 and since PSU2(C) is a group, is an element of PSU2(C).
By the previous argument, an element of PSU2(C) that fixes 0 is a rotation, so
f ◦R−1

1 (z) = eiϕ z = R2(z), for some ϕ. Now we have f = R2 ◦R1 ∈ Rot(C∞), which
shows that PSU2(C) ⊆ Rot(C∞).

Corollary 11.1. There is a group isomorphism PSU2(C) ∼= SO(3).

Proof. Every element in Rot(C∞) corresponds to a rotation of S2, which extends to
a rotation of R3. This means that Rot(C∞) ∼= SO(3). The statement now follows
from the previous theorem.
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12 Finite Groups of Möbius Transformations

In this section we want to classify all finite subgroups of PSL2(C). The presentation
will be a bit less detailed then the previous sections. Some algebraic arguments
needed to complete the proofs of the theorems are beyond the scope of these notes,
and will not be presented.

Recall that f is elliptic if 0 ≤ tr2(f) < 4 and that by Theorem 11 an element
of finite order is elliptic. Hence the finite subgroups of PSL2(C) must consist of
elliptic elements and the identity. Recall that two subgroups Γ1,Γ2 ∈ PSL2(C) are
conjugate in PSL2(C) if there exists a g ∈ PSL2(C) such that Γ1 = gΓg−1. This
means that the elements in Γ1 are simultaneously conjugate (conjugate by the same
element) to the elements in Γ2.

The next theorem says that a subgroup of elliptic transformations together with
the identity is conjugate to a subgroup of rotations.

Theorem 13. Let Γ be a subgroup of PSL2(C) consisting of elliptic elements to-

gether with the identity. Then Γ is conjugate in PSL2(C) to a subgroup of PSU2(C).
Sketch of Proof. Let Γ be a subgroup of PSL2(C) consisting of elliptic elements
together with the identity, and let Γ̂ be the image of Γ in SL2(C).

Step 1: Show that by conjugating Γ̂ we may assume that Γ̂ contains the element

S =

[

λ 0

0 λ

]

, where |λ| = 1.

Step 2: Consider an arbitrary element of Γ̂, T =

[

a b
c d

]

. By calculating tr2(ST )

one shows that a = d.
Step 3: By calculating STS−1T−1 one shows that b = 0 if and only if c = 0.
Step 4: One shows that there exists an r ∈ R ⊆ {0} depending on Γ, but

not T ∈ Γ such that c = rb. Put v = 4
√

|r| and define a transformation V =
[

v 0
0 v−1

]

∈ SL2(C). Now we have

V TV −1 =































[

a v2b

v2b a

]

r > 0, (?)

[

a v2b

−v2b a

]

r < 0. (??)

This implies that by replacing Γ̂ by V Γ̂V −1 we may assume that the elements in Γ
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are of the form (?) or (??). Since SU(2) =

{[

a b

−b a

]

| aa + bb = 1

}

it is enough

to show that the elements of Γ̂ are of the form (??). We also see that V SV −1 = S,
even after replacing Γ̂ by V Γ̂V −1, Γ̂ still contains S.

Step 5: Consider an element =

[

a b

b a

]

of type (?) in Γ̂. Since S, T ∈ Γ̂ the

product STS−1T−1 is an element of Γ̂. One now checks that tr2(STS−1T−1) > 4,
so STS−1T−1 is neither the identity, nor elliptic. This is a contradiction and hence
Γ̂ consists of elements of type (??), which means that Γ is conjugate to a subgroup
of PSU2(C).
Corollary 12.1. Every finite group of Möbius transformations is conjugate to a

group of rotations of C∞.

Proof. As previously noted, by Theorem 11 an element of finite order is elliptic.
Hence the finite subgroups of PSL2(C) must consist of elliptic transformations and
the identity. By the previous theorem, such a subgroup is conjugate in PSL2(C) to
a subgroup of rotations.

The proof of the following theorem relies on some results in group theorey, and
will be omitted.

Theorem 14. Let Γ be a finite group of rotations in C∞. Then one of the following

holds.

1. Γ is cyclic,

2. Γ is dihedral,

3. Γ is the symmetry group of a regular tetrahedron (A4), octahedron (S4) or

icosahedron (A5).

One can show that two finite subgroups in PSL2(C) are conjugate if and only
if they are isomorphic. Combining the previous two theorems yields the following
classification result.

Corollary 12.2. Every finite subgroup of PSL2(C) is cyclic, dihedral, or isomorphic

to A4, S4 or A5.

Proof. By Theorem 13 and the remark before it, every finite subgroup of rotations,
i.e. a subgroup of PSU2(C). The corollary now follows from Theorem 14 and the fact
that two subgroups of PSL2(C) are conjugate if and only if they are isomorphic.
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14 Problems

Problem 1. Show that a line ax+ by = c/2 can be written as Az +Az = c, c real.
Find the equation for the line through i and 1 + 2i.

Problem 2. Find a formula for the reflection in the line Az + Az = c, |A| = 1.
What is the formula for the reflection in the line x+ y = 1?

Problem 3. Find the formula for the circle {z ∈ C | |z−C| = r} in terms of x and
y, z = x+ iy. Find the equation for the circle of radius 2 and center i.

Problem 4. Write down the formula for the direct affine transformation given by:

1. Translation in the direction (2,−3).

2. Rotation about (0, 1) through π/4.

Problem 5. Let SP be the stereographic projection from the north pole. Let
P = (u, v, w) and z = x + iy. Let SP (P ) = z. Derive the formulas for u, v, w in
terms of x, y (that is, fill in the details in the proof of Proposition 3.1).

Problem 6. Show that the stereographic projection preserves angles. That is, for
r and s lines in C inclined at an angle θ at the origin (i.e. p = 0 in the formulas
in the proof of Proposition 3.2), find the equations for the line on S2 and show that
the angle between the tangent vectors at t = 0 is θ.

Problem 7. A fixed point for f : C∞ → C∞ is a point z such that f(z) = z. Find the
fixed points (if any) of a dilation, translation, a general direct affine transformation
and the inversion. Remember to check if infinity is a fixed point!

Problem 8. Find the image of the horizontal line y = c, both for c = 0 and c 6= 0,
under the inversion map.

Problem 9. If the unit circle is oriented counter-clockwise, determine the orientation
of the image of the unit circle under the inversion map. What is the image of the
center of the circle?

Problem 10. Determine the image of the disk {z ∈ C | |z| < 1} under the inversion
map. Interpret this in terms of inversion on S2.

Problem 11. Find a linear transformation that takes the unit circle {z ∈ C | |z| =
1} onto the circle {w ∈ C | |w − 5| = 3} and maps the point z = i to the point
w = 2. Note the word linear!
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Problem 12. Show that a Möbius transformation f can have at most two fixed
points in the complex plane unless f is the identity.

Problem 13. Discuss the image of the circle |z − 2| = 1 and its interior under the
maps

1. f(z) = z − 2i

2. f(z) = 3iz

3. f(z) = z−2
z−1

4. f(z) = z−4
z−3

5. f(z) = 1
z
.

Problem 14. Find a Möbius transformation that maps {z ∈ C | |z| < 1} onto the
right half plane {z ∈ C | <(z) > 0} and takes −i to the origin.

Problem 15. Find the Möbius transformation that maps (0, 1,∞) to the points
(0, i,∞), (0, 1, 2), (−i,∞, 1) and (−1,∞, 1).

Problem 16. What is the image of the third quadrant under the map f(z) = z+i
z−i

?

Problem 17. What is the image of the sector {z ∈ C | −π
4
< arg(z) < π

4
} under

the map f(z) = z
z−1

?

Problem 18. Show that a Möbius transformation has ∞ as its only fixed point if and
only if it is a translation, but not the identity. Show that a Möbius transformation
has 0 and ∞ as its only fixed point if and only if it is a dilation, but not the identity.

Problem 19. Let f be a Möbius transformation with fixed points z1 and z2. If
g is another Möbius transformation, show that g−1fg has fixed points g−1(z1) and
g−1(z2).

Problem 20. Two Möbius transformations f and g are said to commute if fg = gf .
Let f be a Möbius transformation not equal to the identity. Show that a Möbius
transformation g commutes with f if g and f have the same fixed points. Hint: Use
the statements in the previous problems.

Problem 21. Show that the set of elliptic transformations in M(C∞) together with
the identity form a subgroup of M(C∞) under composition of maps.
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Problem 22. Consider the Möbius transformation f(z) = z−2
z−1

.

1. Determine the fixed points of f .

2. Calculate tr2(f) and the multiplier of f .

3. Find a representative (not f itself) of the conjugacy class of f .

4. Describe the limiting behavior of f , limn→∞ fn(z) for all z ∈ C∞.

Problem 23. Consider the Möbius transformation f(z) = iz
z−i

.

1. Determine the fixed points of f .

2. Calculate tr2(f) and the multiplier of f .

3. Find a representative (not f itself) of the conjugacy class of f .

4. Describe the limiting behavior of f , limn→∞ fn(z) for all z ∈ C∞.

Problem 24. By using the formulas for stereographic projection, check that the
antipodal point to z ∈ C∞ is given by −1

z
.

Problem 25. Show that the set of rotations of C∞ form a group under composition
of maps.

Problem 26. Show that PSU2(C) form a subgroup of PSL2(C).
Problem 27. Let (z0, z1, z2, z3) be four distinct points in C∞. Show that there are
precisely two values of k such that (z0, z1, z2, z3) can be mapped to (1,−1, k,−k) by
a Möbius transformation.

Problem 28. Show that a rotation of C∞ is represented by an elliptic element
PSL2(C).
Problem 29. Show that an elliptic element in PSL2(C) whose fixed points are
antipodal points in C∞ is a rotation of C∞.

Problem 30. Let f and g be Möbius transformations with a common fixed point
z0. Show that the Möbius transformation f ◦ g ◦ f−1 ◦ g−1 is either parabolic or the
identity. (Hint: Assume z0 = ∞. Why is this method valid?)
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